МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой оптики и спектроскопии

_(Овчинников О.В.)

14.06.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.03.02 Наноматериалы для устройств нанофотоники

- 1. Код и наименование направления подготовки / специальности:
- 12.04.03 Фотоника и оптоинформатика
- **2.** Профиль подготовки / специализация: <u>Материалы и устройства фотоники и</u> оптоинформатики
- 3. Квалификация (степень) выпускника: высшее образование (магистр)
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра оптики и спектроскопии

- **6. Составители программы:** <u>Кондратенко Тамара Сергеевна, кандидат физикоматематических наук, доцент</u>
- 7. Рекомендована: НМС физического ф-та ВГУ протокол № 6 от 13.06.2024

отметки о продлении

8. Учебный год: <u>2024/2025</u> Семестр(ы): <u>2</u>

9. Цели и задачи учебной дисциплины:

Целью изучения дисциплины является изучение основных классов наноматериалов и нанотехнологий, применяемых при изготовлении устройств фотоники и оптоинформатики и освоении дисциплинарных компетенций.

Задачи учебной дисциплины:

- проанализировать имеющиеся наноматериалы, используемые для приложений фотоники, и сформировать знания о характеристиках и технологиях получения основных функциональных материалов фотоники, а также представление об основных тенденциях и направлениях развития современных оптических технологий;
- сформировать умение пользоваться методами поисковых систем, методами исследовательской работы в области оптических наноматериалов и нанотехнологий;
- овладеть навыками работы с технологиями получения функциональных материалов для устройств фотоники и оптоинформатики.

10. Место учебной дисциплины в структуре ООП: является дисциплиной по выбору вариативной части цикла Б1

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты
	компетенции			обучения
ПК-1	Способен анализировать научно-технические проблемы и ставить цели и задач проводимых научных исследований на основе подбора и изучения литературных и патентных источников	ПК-1.1	оставляет план поиска научно-технической информации по созданию материалов и разработке устройств фотоники и оптоинформатики Проводит поиск и анализ научно-технической информации для	Знать: материал всех разделов программы по данному курсу. В том числе: описание структур и свойств наноразмерных образований, к которым относятся квантовые точки, квантовые нити, нанотрубки, тонкопленочные гетероструктуры, молекулярные кластеры. Уметь: применять знания к выявлению физических механизмов, ответственных за возникновение новых свойств при переходе от «макровещества» к наноструктурам, построенных из тех же самых атомных и
			создания материалов и разработки устройств фотоники и оптоинформатики	молекулярных элементов, что и вещество. Уметь проводить анализ модельных представлений, объясняющих особенности строения и свойства вещества в наносостояниях. Владеть: определенными методами получения

		наноструктур и оптическими
		методами их исследования,
		навыками участия в разработке
		новых методов и методических
		подходов в научно-
		инновационных исследованиях и
		инженерно-технологической
		деятельности

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — <u>3 / 108</u>

Форма промежуточной аттестации экзамен

13 Трудоёмкость по видам учебной работы

			Трудоемкость		
Вид уч	ебной работы	Всего	По семестрам 2		
Аудиторные занятия		48	48		
	лекции	32	32		
в том числе:	практические	-	-		
	лабораторные	16	16		
Самостоятельная работа		24	24		
Форма промежуточной аттестации			экзамен		
(контроль <u>36 часов</u>)					
Итого:		108	108		

13.1 Содержание разделов дисциплины

Nº	Наименование раздела	Содержание раздела дисциплины	
п/п	дисциплины	Оодержание раздела дисциплины	
		1. Лекции	
1.	Введение. Особенности наноструктур и наноструктурированных материалов	Общие представления о материалах нанофотоники.	
2.	Нанокластеры и наноматериалы	Нанокластеры и их классификация. Классификация нанокластеров (по способу получения), предложенная Суздалевым И.П. Размерные эффекты. «Магические» числа. Методы получения различных нанокластеров и наноструктур. Классификация Третьякова наноматериалов и способы их получения.	
3.	Основные типы наноструктур.	Понятие квантовой ямы, квантовой нити, квантовой точки, сверхрешетки. Общее понятие эффекта размерного квантования. Квантовая механика простейших структур. Размерное квантование в простейших моделях.	
4.	Углеродные наноструктуры	Углеродные молекулы, углеродные кластеры, углеродные нанотрубки. Методы получения.	
5.	Распространение электромагнитных волн в периодических средах	Сверхрешетки. Модели сверхрешеток разной размерности. Распространение электромагнитного излучения в периодических структурах.	
6.	Объёмные	Фотонные кристаллы. Фотонная запрещённая зона. Спектр	

	наноструктурированные материалы для фотоники	отражения и пропускания. Дефекты в фотонных кристаллах, плотность фотонных состояний. Эффект «суперпризмы».
		2. Лабораторные занятия
7.	Определение параметров абсорбционных и интерференционных фильтров	Исследование спектров пропускания оптических абсорбционных и интерференционных фильтров
8.	Определение геометрических параметров квантовых точек и плазмонных наночастиц.	Исследование размерного эффекта и эффекта формы в спектрах экстинкции полупроводниковых коллоидных квантовых точек и плазмонных наночастиц

13.2. Разделы дисциплины и виды занятий

Nº	Наиманаранна раздала	Виды занятий (часов)					
п/ п	Наименование раздела дисциплины	Лекции	Практичес кие	Лаборатор ные	Самостоятель ная работа	Контро ль	Всего
1.	Введение. Особенности наноструктур и	2	-	-	2	4	8
	наноструктурированных материалов	_			_		· ·
2.	Нанокластеры и наноматериалы	8	-	-	4	8	20
3.	Основные типы наноструктур.	9	-	-	3	4	16
4.	Углеродные наноструктуры	4	-	-	4	4	12
5.	Распространение электромагнитных волн в периодических средах	5	-	-	3	4	12
6.	Объёмные наноструктурированные материалы для фотоники	4		-	2	4	10
7.	Определение параметров абсорбционных и интерференционных фильтров	-	6	-	3	4	13
8.	Определение геометрических параметров квантовых точек и плазмонных наночастиц.		10		3	4	17
	Итого	32	16	-	24	-	108

14. Методические указания для обучающихся по освоению дисциплины

Основными этапами освоения дисциплины являются:

- 1) Лекции. В ходе лекционных занятий студенту необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций
- <u>2) Практические занятия.</u> При подготовке к практическим занятиям студентам рекомендуется: внимательно прочесть конспект лекции по теме, изучить рекомендованную литературу;

- изучить методическую литературу по теме практического занятия, разобрать примеры решения практических задач; проверить свои знания, отвечая на вопросы для самопроверки; если встретятся незнакомые термины, обязательно обратиться к словарю и зафиксировать их в тетради; при затруднениях сформулировать вопросы к преподавателю
- 3) Самостоятельная работа студента. Изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств научной информации.
- 4) Подготовка к аттестации. В ходе подготовки к текущим аттестациям и промежуточной аттестации студенту рекомендуется активно использовать электронный образовательный портал Moodle электронная среда дисциплины, с предоставлением презентаций лекций, заданий для выполнения практических работ, дополнительного теоретического материала и нормативно-правовых документов по темам и перечней вопросов для подготовки к текущим аттестациям и промежуточной аттестации. Также студенту рекомендуется использовать весь набор методов и средств современных информационных технологий для изучения отечественной и зарубежной литературы по дисциплине, оценки и анализа ее текущего состояния и перспектив развития. Ему предоставляется возможность работать в компьютерных классах факультета (313а аудитория), иметь доступ к Интернетресурсам и электронной почте, использовать имеющиеся на кафедре оптики и спектроскопии физического факультета информационные технологии, использовать ресурсы Зональной научной библиотеки ВГУ, в том числе электронно-библиотечные системы.

15. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

№ п/п	Источник
1	Тимофеев, В. Б. Оптическая спектроскопия объемных полупроводников и наноструктур : учебное пособие / В. Б. Тимофеев. — Санкт-Петербург : Лань, 2022. — 512 с. — ISBN 978-5-8114-1745-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/209666
2	Илюшин, В. А. Наноматериалы: учебное пособие: [16+] / В. А. Илюшин; Новосибирский государственный технический университет. — Новосибирск : Новосибирский государственный технический университет, 2019. — 114 с.: ил., табл. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=574749 .

б) дополнительная литература:

№ п/п	Источник
	Основы физики гибридных наноструктур / А.В.Федоров, А.В.Баранов, А.О. Орлова, В.Г.
3	Маслов Учебное пособие СПб: СПб НИУ ИТМО, 2014. — 122 с.
	https://books.ifmo.ru/file/pdf/1642.pdf
	<u>Игнатов А.Н.</u> Оптоэлектроника и нанофотоника : [учебное пособие для студентов,
	обучающихся по направлениям подготовки "Электроника и наноэлектроника" и
4	"Телекоммуникации"] / А.Н. Игнатов .— Санкт-Петербург ; Москва ; Краснодар : Лань,
	2011 .— 538 с. : ил., табл. — Библиогр.: c.526-530.
	Возианова А.В. Нанофотоника. Часть 1 [Учебное пособие] / А.В. Возианова, М.К.
5	Ходзицкий . — Санкт-Петербург : НИУ ИТМО, 2013 .— 93 с. : ил., табл. — Библиогр.:
	c.91-93.
6	<u>Носов, Юрий Романович</u> . Оптоэлектроника / Ю. Р. Носов .— М. : Советское радио,
O	1977 .— 230,[2] c.
	Оптоэлектроника / О.Н. Ермаков [и др.] .— М. : Янус-К, 2010— (Электроника в
7	техническом университете. Прикладная электроника / под общ. ред. И.Б.Федорова) .—
	ISBN 978-5-8037-0505-5.

8	<u>Игнатов А.Н.</u> Оптоэлектронные приборы и устройства: учеб. пособие / А.Н.
0	Игнатов .— Москва : Эко-трендз, 2006. — 272 с. : ил.,
	<u>Карих Е.Д.</u> Оптоэлектроника: Учеб. пособие для студ. специальностей "Радиофизика",
9	"Физическая электроника" вузов / Е.Д. Карих .— Минск : БГУ, 2000 .— 262, [1] с. — ISBN
	985-445-277-8 : 30.00.
10	<u>Носов, Юрий Романович</u> . Оптоэлектроника / Ю. Р. Носов .— М. : Советское радио,
10	1977 .— 230,[2] c.
11	Страховский Г.М., Основы квантовой электроники / Г.М. Страховский, А.В. Успенский -
' '	М. : Высшая школа, 1973 312 с.
12	Ярив А. Квантовая электроника / А. Ярив - М. : Советское радио, 1980 488 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
13	Электронно-библиотечная система BOOK.ru <u>https://www.book.ru/</u>
14	ЭБС «ПЛАТФОРМА ЮРАЙТ» – https://urait.ru/
15	ЭБС Лань – https://e.lanbook.com/
16	ЭБС «Электронная библиотека технического ВУЗа» («ЭБС «Консультант студента») – http://www.studentlibrary.ru/
17	ЭБС «Университетская библиотека Online» – https://biblioclub.ru/
18	Национальный цифровой ресурс "РУКОНТ" – <u>http://rucont.ru</u>

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Nº	Источник
п/п	
1	Основы оптики и спектроскопии квантовых точек: учебно-методическое пособие для вузов: [для проведения специального физ. практикума студ. 1 к. магистратуры, обуч. по программам "Физика опт. явлений" и "Оптика наноструктурированных материалов" на каф. оптики и спектроскопии физ. фак. Воронеж. гос. ун-та для направления 010700 - Физика] / Воронеж. гос. ун-т; [сост.: О.В. Овчинникови др.]. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013. — 80 с.: ил. — Библиогр.: с.78-80. <url:http: elib="" m13-155.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
2	Начала оптики наночастиц [Электронный ресурс] : учебное пособие / [О.В. Овчинников и др.] ; Воронеж. гос. ун-т .— Электрон. текстовые дан. — Воронеж : Издательский дом ВГУ, 2018 .— Загл. с титула экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— <url:http: elib="" m18-242.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
3	Электронный курс "Материалы нанофотоники" для дистанционного обучения https://edu.vsu.ru/course/view.php?id=5632

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

В учебном процессе используются следующие образовательные технологии. По образовательным формам: лекционные и практические занятия. Преобладающими методами и приемам обучения являются: объяснительно-иллюстративные (объяснение, показ – демонстрация учебного материала и др.); активные (анализ учебной и научной литературы, составление схем и др.) и интерактивные, в том числе и групповые (взаимное обучение в форме подготовки и обсуждения докладов); информационные; мультимедийные (работа с сайтами академических структур, научно-исследовательских организаций, электронных

библиотек и др., разработка презентаций, сообщений и докладов, работа с электронными обучающими программами и т.п.).

Организационная структура лекционного занятия:

- 1. Формулировка темы, целей занятия, постановка проблемного вопроса.
- 2. Разъяснение вопросов теоретического и практического плана для решения поставленной проблемы.
 - 3. Рассмотрение путей решения проблемного вопроса на конкретных примерах.
 - 4. Заключение, формулировка выводов.
- 5. Формулировка задания для самостоятельной домашней работы. Озвучивание темы следующего занятия.

Организационная структура практического занятия:

- 1. Формулировка темы и теоретическое изучение материала лабораторной работы.
- 2. Проверка готовности студентов к занятию их теоретическая готовность к выполнению работы.
- 3. Основная часть занятия, где студенты выполняют лабораторную работу, а контроль их исполнения (полнота и качество) и помощь осуществляет преподаватель.
- 4. Заключительная часть подведение преподавателем итогов занятия, получение студентами заданий на самостоятельную работу.

Текущий контроль проводится путем проверки выполнения домашнего задания, входного контроля (в виде самостоятельных и контрольных работ, докладов и рефератов).

При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и соцсети.

1	Поисковая система e-library.ru
2	Поисковая система google.ru
3	Архив научных журналов http://arch.neicon.ru/
4	Единое окно доступа к образовательным ресурсам. Библиотека http://window.edu.ru/
5	Электронный каталог ЗНБ ВГУ https://www.lib.vsu.ru/
6	Электронная библиотека Попечительского совета механико-математического факультета
	МГУ lib.mexmat.ru

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория (ауд. 129): специализированная мебель, проектор, ноутбук, экран. WinPro 8, OfficeStandard 2019, «Антиплагиат.ВУЗ», MathWorks TotalAcademicHeadcount 394018, г.Воронеж, площадь Университетская, д.1, пом.І, этаж – 1, пом. 141

Лаборатория люминесцентной спектроскопии (ауд. 132): специализированная мебель, спектрофлуориметр на базе монохроматоров МДР-41, МДР-4 и ФЭУR955P, работающего в режиме счета фотонов; волоконно-оптический спектральный комплекс OceanOpticsнa базе спектрометра USB-2000+XR1 с источником излучения USB-DT, и набором зондов для измерения диффузного ISP-80-8-R и зеркального отражения RSS-VA и люминесценции R400-7-SR, пропускания и люминесценции жидких и твёрдых образцов CUV-VAR и CUV-ALL-UV; для производства воды аналитического качестваУПВА-5; установка двухступенчатые насос VE-2100N (Value); вакуумный насос VE-215 (Value); весы OHAUS PX224/E аналитические; спектрометр волоконно-оптический VISION2GO NIR спектрометр 950-1630 нм (Р-Аэро). блоки питания лабораторные HY3005 (Mastech), блоки питания лабораторные HY3020 (Mastech), лазерный модуль/блок пит., поворотн. креплен.; лазерный

модуль LM-650180 (блок пит., креп. поворотн.); вытяжной шкаф; центрифуги лабораторные; рН-метр 150МИ; оптический стол; Набор цветных стекол; Лабораторный стенд: "Люминесценция"; Лазер ЛГИ-21; Осциллограф цифровой Rigol; Осциллограф АКИП-4122/12; Ультразвуковая ванна ПСБ-1322-05; Ультразвуковая ванна ПСБ-1360-05. WinPro 8. OfficeStandard 2019. «Антиплагиат.ВУЗ», MathWorks TotalAcademicHeadcount. ANSYSHFAcademicResearch, Пакет ПО для управления спектрофотометром USB 2000+ обработки данных, Пакет управления (OceanOptics), для анализа и ПО спектрометрическим комплексом на базе монохроматора МДР-41 (ОКБ Спектр) 394018, г.Воронеж, площадь Университетская, д.1, пом.І, этаж – 1, пом. 28

Учебная аудитория (ауд. 133): специализированная мебель, компьютер, мультимедиапроектор, экран. WinPro 8, OfficeStandard 2019, «Антиплагиат.ВУЗ» 394018, г.Воронеж, площадь Университетская, д.1, пом.І, этаж – 1, пом. 136

19. Оценочные средства для проведения текущего контроля успеваемости и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Введение. Особенности наноструктур и наноструктурированн ых материалов	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
2.	Нанокластеры и наноматериалы	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
3.	Основные типы наноструктур.	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
4.	Углеродные наноструктуры	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
5.	Распространение электромагнитных волн в периодических средах	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
6.	Объёмные наноструктурированн ые материалы для фотоники	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины
7.	Определение параметров абсорбционных и интерференционных фильтров	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины Контрольная работа (лабораторная работа)
8.	Определение геометрических параметров квантовых точек и плазмонных наночастиц	ПК-1	ПК-1.1 ПК-1.2	Домашние (самостоятельные) задания для контроля освоения дисциплины Контрольная работа (лабораторная работа)
Промежуточная аттестация форма контроля – экзамен				Комплект КИМ (Тест + список вопросов, требующих развернутого ответа+практические задания)

20. Типовые оценочные средства и методические материалы, определяющие

процедуры оценивания

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций. Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме: устного опроса (индивидуальный опрос). Критерии оценивания приведены ниже. Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования. Контрольно-измерительные материалы промежуточной аттестации включают в себя тесты и теоретические вопросы, позволяющие оценить уровень полученных знаний, а также практическое задание, позволяющее оценить степень сформированности умений и навыков. При оценивании используются качественные шкалы оценок. Критерии оценивания приведены в п. 20.2.

Для оценивания результатов обучения на зачете учитываются следующие показатели:

- 1) знание учебного материала, владение понятийным аппаратом и теоретическими основами волновых явлений;
- 2) умение связывать теорию с практикой;
- 3) умение иллюстрировать ответ примерами, фактами, данными современных научных исследований в оптике;
- 4) умение применять основные законы и анализировать результаты наблюдений и экспериментов
- 5) владение понятийным аппаратом и умение применять теоретические знания для решения практических задач.

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- 1. Посещаемость лекционных занятий. Проверка преподавателем конспектов по пройденному материалу. Домашние (самостоятельные) задания для контроля освоения лисциплины.
- 2. Выполнение лабораторных работ (выполнение и оформление лабораторной работы). Контрольная работа (практические задания, устный опрос по контрольным вопросам к лабораторной работе).

Домашние (самостоятельные) задания формулируются преподавателем по окончании занятия для закрепления обучающимся пройденного материала (содержит перечень задач для выполнения / вопросов) или подготовке к последующим занятиям. На дальнейшем соответствующем занятии преподаватель осуществляет полную/выборочную проверка выполнения обучающимися домашних (самостоятельных) заданий. Полная проверка проводится в форме тестирования с ограничением по времени. Выборочная проверка осуществляется по средствам устного опроса выборочного количества студентов. В случае невыполнения обучающимся домашнего (самостоятельного) задания преподаватель не оценивает работу обучающего на текущем м занятии выше 2 баллов (положительная оценка (3/4/5) может быть выставлена по результатам выполнения индивидуального задания). Типовые задания теста и вопросы для проведения опроса представлены в Приложении 1 к рабочей программе дисциплины.

Контрольная работы включает в себя выполнение и представление практического задания. Ее выполнение оценивается в два этапа:

- 1) выполнение и оформление лабораторной работы;
- 2) защита лабораторной работы (обсуждение практических заданий и полученных результатов, устный опрос по контрольным вопросам к практической работе).

Критерии оценивания контрольная работы (практических заданий):

притерии оценивания контрольная расоты (практически		
	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
	ности	
	компетенций	
Все пункты лабораторной работы выполнены верно,	Повышенный	Отлично
оформлены в соответствии с требованиями, указанными	уровень	
преподавателем, сделаны выводы. Обучающийся в полной мере		
владеет понятийным аппаратом и теоретическими основами		
дисциплины, способен иллюстрировать ответ примерами,		
фактами, данными научных исследований, применять		
теоретические знания для решения практических задач в		
области современной физики.		
Все пункты лабораторной работы выполнены верно,	Базовый	Хорошо
оформлены с незначительными нарушениями требований,	уровень	
указанных преподавателем, сделаны выводы. Недостаточно		
продемонстрировано теоретических основ дисциплины.		
Пункты лабораторной работы выполнены частично верно,	Пороговый	Удовлетвори-
оформлены с нарушением требований, указанных	уровень	тельно
преподавателем, сделаны выводы. Имеет не полное		
представление о теоретических основах, допускает		
существенные ошибки.		
Пункты лабораторной работы не выполнены или выполнены	_	Неудовлетвори-
неверно, оформлены с нарушением требований, указанных		тельно
преподавателем, выводы не сделаны или не полные по		
содержанию. Обучающийся демонстрирует отрывочные,		
фрагментарные знания, допускает грубые ошибки.		

20.2. Промежуточная аттестация

Для оценивания результатов обучения на зачёте используются следующие показатели:

- 1. знание учебного материала, владение понятийным аппаратом и теоретическими основами дисциплины;
 - 2. умение связывать теорию с практикой;
- 3. умение описывать основные характеристики, методики контроля и параметры фотоприёмников;
- 4. владение знаниями о технологическом процессе проектирования устройств фотоники, включая основные термины и определения жизненного цикла изделия, представления о разработке технологического маршрута и операционной карты;
- 5. умение читать чертежи и анализировать технические условия, составлять маршрутные и операционные карты технологического процесса конструирования изделия фотоники, используя соответствующую конструкторскую документацию и навыки работы с ГОСТами.

Промежуточная аттестация по дисциплине проходит в 2 последовательных этапа:

- 1) тест и расчетные практические задачи;
- 2) устный опрос, с применением контрольно-измерительных материалов в форме билетов, содержащих по два вопроса к зачету из следующего перечня:
 - 1. Определение терминов «нанотехнологии» и «наноматериал»
 - 2. Предпосылки нанотехнологии.
 - 3. Наночастицы и нанокристаллы: основные отличия.
 - 4. Нанотехнологии типа «снизу-вверх» (bottom-up)

- 5. Нанотехнологии типа «сверху-вниз» (top-down)
- 6. Свойства наноматериалов (структурные, электронные, магнитные, каталитические и др.)
 - 7. Применения наноматериалов.
 - 8. Международная классификация наноматериалов.
 - 9. Наносистемы и наноустройства.
- 10. Определение термина «нанокластер». Классификация нанокластеров (по способу получения), предложенная Суздалевым И.П.
 - 11. Размерные эффекты. «Магические» числа
 - 12. Электронные свойства молекулярных кластеров
 - 13. Гибридные молекулярные кластеры
 - 14. Методы синтеза молекулярных кластеров
- 15. Основные типы наноструктур. Понятие квантовой ямы, квантовой нити, квантовой точки, сверхрешетки.
 - 16. Общее понятие эффекта размерного квантования.
 - 17. Электроны в кристаллической решетке. Вид функции электрона в кристалле.
 - 18. Метод эффективных масс. Огибающая функция.
- 19. Метод разделения переменных. Задача Штурма-Лиувиля. Собственные значения и собственные функции.
 - 20. Уравнение Шредингера. Задача о прямоугольной потенциальной яме.
 - 21. Задача об электроне в сферической потенциальной яме.
 - 22. Задача об экситоне. Переход от объемного кристалла к квантовой точке.
 - 23. Сильный конфаймент. Экситонный режим. Формулы Брюса и Кайанумы.
 - 24. Правила отбора для межзонных переходов.
- 25. Основные методы синтеза квантовых точек. Метод молекулярно-лучевой эпитаксии. Мосгидридная газофазовая эпитаксия. Методики коллоидного синтеза. Квантовые точки структуры ядро/оболочка. Синтез в мицеллах.
- 26. Спектр оптического поглощения КТ и его интерпретация. Обработка спектра поглощения.
 - 27. Люминесценция квантовых точек. Экситонная, рекомбинационная люминесценция.

Верно выполнив тест, обучающийся получает КИМ, готовит ответы на вопросы КИМа и отвечает преподавателю.

Требования к выполнению заданий, шкалы и критерии оценивания

	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
притории одопивания компотондии	ности	шкала одолок
	компетенций	
Посещение лекционных и практических занятий.	Повышенный	Отлично
Ответ на вопрос контрольно-измерительного материала во	уровень	
время экзамена. Ответы на дополнительные вопросы.	, , , , , , , , , , , , , , , , , , ,	
Обучающийся в полной мере владеет понятийным аппаратом и		
теоретическими основами дисциплины, способен		
иллюстрировать ответ примерами, фактами, данными		
научных исследований, применять теоретические знания для		
решения практических задач в области современной физики.		
Ответ на контрольно-измерительный материал не	Базовый	Хорошо
соответствует одному из перечисленных показателей, но	уровень	
обучающийся дает правильные ответы на дополнительные		
вопросы. Недостаточно продемонстрировано теоретических		
основ дисциплины.		
Ответ на контрольно-измерительный материал не	Пороговый	Удовлетвори-
соответствует двум из перечисленных показателей,	уровень	тельно
обучающийся дает неполные ответы на дополнительные		
вопросы. Имеет не полное представление о теоретических		
основах, допускает существенные ошибки.		
Ответ на контрольно-измерительный материал не	_	Неудовлетвори-
соответствует выше перечисленным показателям.		тельно
Обучающийся демонстрирует отрывочные, фрагментарные		
знания, допускает грубые ошибки.		

Приложение 1

Типовые тестовые задания

Вопрос 1. Квантовые точки, квантовые проволоки, двумерный электронный газ — что объединяет эти объекты

- А. Это составные части интегральной схемы;
- Б. Это двумерные материалы;
- В. Все это твердотельные наноструктуры;
- Г. Все это прямозонные материалы?

Вопрос 2. В фотонике часто используют понятие «метаматериалы». Что за ним скрывается

- А. Это наноструктурированные среды с отрицательным показателем преломления;
- Б. Полимерные композиционные материалы из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных смол;
- В. Это композиционные материалы, свойства которых обусловлены искусственно созданной периодической структурой, а в меньшей степени свойствами составляющих материалов;
- Г. Это материалы, полученные за счет взаимодействия химически различных составляющих, формирующих определенную структуру, отличающуюся от структур исходных реагентов, но часто наследующую их определенные мотивы и функции?
 - Вопрос 3. В электронике и оптоэлектронике активно используются двумерные материалы. В чем их основные преимущества
- А. При работе с ними используются разработки кремниевых технологий и инженерия прямозонных материалов
 - Б. Все перечисленные факторы
- В. Их производство довольно дешево, так как в двумерных материалах используются распространенные химические элементы
 - Г. У двумерных материалов хороший электростатический контроль

Вопрос 4. Что не характерно для стационарных состояний квантовой системы

- А. Их волновая функция зависит от времени по гармоническому закону;
- Б. Средние значения плотности вероятности не зависят от времени;
- В. Энергетический спектр не зависит от финитного или инфинитного характера движения;
- Г. Среди возможных состояний квантовой системы существует основное состояние?

Вопрос 5. Эквидистантный энергетический спектр характерен для задачи

- А. Атома водорода;
- Б. Гармонического осциллятора;
- В. Прямоугольной потенциальной ямы;
- Г. Сферической прямоугольной потенциальной ямы?

Вопрос 6. Размерность волновой функции определяется:

- А. Собственными функциями спектральной задачи;
- Б. Собственными значениями спектральной задачи;

- В. Нормировочной постоянной;
- Г. Собственными значениями и собственными функциями спектральной задачи?

Расчетные задачи

- 1. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках CdTe с учетом параметров $m_e = 0.12m_0$, $m_h = 0.4m_0$, $\epsilon = 10.2$ и $E_a = 1.6$ эВ, если средний размер по ансамблю составляет 4.2нм.
- 2. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках ZnTe с учетом параметров $m_e = 0.11m_0$, $m_h = 0.65m_0$ и $E_g = 2.25$ эB, если средний размер по ансамблю составляет 5нм.
- 3. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках CdSe с учетом параметров $m_e = 0.11m_0$, $m_h = 0.45m_0$, $\epsilon = 5.96$ и $E_a = 1.74$ эВ, если средний размер по ансамблю составляет 5.5нм.
- 4. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках ZnSe с учетом параметров $m_e = 0.15m_0$, $m_h = 0.61m_0$, $\epsilon = 5.9$ и $E_a = 2.82$ эВ, если средний размер по ансамблю составляет 3.4нм.
- 5. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках ZnS с учетом параметров $m_e = 0.35m_0$, $m_h = 0.62m_0$, $\epsilon = 5.13$ и $E_g = 2.90$ эВ, если средний размер по ансамблю составляет 3.3 нм.
- 6. Оценить по формуле Кайанумы эффективную ширину запрещенной зоны в квантовых точках CdS с учетом параметров $m_e = 0.195m_0$, $m_h = 0.8m_0$, $\epsilon = 7.20$ и Eg = 2.36 эВ, если средний размер по ансамблю составляет 4.0нм.
- 7. Оценить по формуле Брюса средний размер квантовых точек ZnS в ансамбле, если эффективная ширина запрещенной зоны 3.16 эВ. ($m_e = 0.35m_0$, $m_h = 0.62m_0$, $\varepsilon = 5.13$).
- 8. Оценить по формуле Брюса средний размер квантовых точек CdS в ансамбле, если эффективная ширина запрещенной зоны 2.77 эВ. ($m_e = 0.205m_0$, $m_h = 0.8m_0$, $\varepsilon = 7.20$).
- 9. Оценить по формуле Брюса средний размер квантовых точек ZnTe в ансамбле, если эффективная ширина запрещенной зоны 2.55 эВ. ($m_e = 0.11m_0$, $m_h = 0.65m_0$, $\varepsilon = 7.28$).
- 10. Оценить по формуле Брюса средний размер квантовых точек CdTe в ансамбле, если эффективная ширина запрещенной зоны 2.05 эВ. ($m_e = 0.12m_0$, $m_h = 0.4m_0$, $\varepsilon = 7.21$).
- 11. Оценить по формуле Брюса средний размер квантовых точек CdSe в ансамбле, если эффективная ширина запрещенной зоны 2.24 эВ. ($m_e = 0.11m_0$, $m_h = 0.45m_0$, $\varepsilon = 5.96$).
- 12. Оценить по формуле Брюса средний размер квантовых точек ZnSe в ансамбле, если эффективная ширина запрещенной зоны 3.0 эВ. (m_e = 0.15m0, m_h = 0.61 m_0 , ε = 5.9).